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ABSTRACT

We address the e-rulemaking problem of categorizing public
comments according to the issues that they address. In con-
trast to previous text categorization research in e-rulemaking
[5, 6], and in an attempt to more closely duplicate the com-
ment analysis process in federal agencies, we employ a set of
rule-specific categories, each of which corresponds to a signif-
icant issue raised in the comments. We describe the creation
of a corpus to support this text categorization task and re-
port interannotator agreement results for a group of six an-
notators. We outline those features of the task and of the
e-rulemaking context that engender both a non-traditional
text categorization corpus and a correspondingly difficult
machine learning problem. Finally, we investigate the appli-
cation of standard and hierarchical text categorization tech-
niques to the e-rulemaking data sets and find that automatic
categorization methods show promise as a means of reduc-
ing the manual labor required to analyze large comment
sets: the automatic annotation methods approach the per-
formance of human annotators for both flat and hierarchical
issue categorization.

1. BACKGROUND AND INTRODUCTION

Every year federal agencies publish in the Federal Register
[on-line version: http://www.gpoaccess.gov/fr/index.html]

several thousand documents on which they seek public com-
ment. Most of these are proposed rules in areas includ-
ing: environmental protection; agriculture standards; drug,
workplace, and consumer safety; import and export controls;
air, highway, and water-based transportation safety; com-
munications; and various federal grant and aid programs.
Federal statutes, especially the Administrative Procedure
Act [5 U.S. C. §8551 et seq.], generally require such reg-
ulations to go through this “notice and comment” process
before they can become final and binding on the public. In
addition, agencies may request comments on a category of
documents known as “guidance.” These documents, which
often closely resemble proposed rules in form, have different
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names® but share the characteristic that they are advice, or
warning, about how the agency will exercise its power or in-
terpret the law, rather than binding rules themselves. Some-
times, the agency is legally required to seek public comment
before it finalizes guidance; other times, it simply chooses
to do so. Finally, there is a third, miscellaneous category of
documents in the Federal Register on which comments are
solicited. These include such things as draft statements of
environmental or other impacts of proposed agency action.
Again, the agency may be required by one of its statutes
to allow the public to comment, or it may be doing so as a
matter of policy.

Until the 1990s, all comments came to the agency in hard
copy — through hand delivery, conventional, or express mail.
As electronic transmission and then the Internet became
more generally available, agencies began to receive com-
ments first by fax and then by e-mail. Most recently, agen-
cies have provided web portals for comment submission. Al-
though a few agency-specific sites remain, most have been
superseded by a central portal, www.regulations.gov, which
now provides access to all agencies’ proposed rules and guid-
ance, as well as to some of the documents in the third,
miscellaneous category. Comments can be submitted to all
agencies through this portal. (Commentors can continue
to use the older submission methods as well.) Transfer of
the notice-and-comment process to the web — and, more
broadly, the use of information technology to support any
step in the rulemaking process — is known as electronic
rulemaking (e-rulemaking).

At the close of the public comment period (typically, 30-60
days) the comments must be reviewed to determine what
issues they contain. The comment process is not a vote; its
purpose is not to tally the commentors’ preferences for or
against the proposal. By law, agencies must act based on
factors, and to further objectives, specified by their autho-

1 . .

These include such widely used names as “statements of
policy” and “interpretive rule,” as well as more agency-
specific names as “circular” and “bulletin.”
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rizing statutes. Along with the proposed rule, guidance, or
other document on which it seeks comment, the agency is
supposed to reveal its underlying data, as well as its legal and
policy rationale. Ideally, the comments will address the sub-
stance of the proposal, and discuss how well the agency has
met the statutory factors and objectives. Ultimately, the
agency’s responsibility (enforceable by the courts in many
cases) is to issue a statement accompanying any final action
it takes; this statement demonstrates its attention to the
comments by responding to significant criticisms they con-
tain, and explaining why it rejected alternatives they suggest
[10].

Reviewing the comments to determine what relevant issues
they raise can present substantial challenges for agencies.
Sometimes they are working under a deadline for final de-
cision, set by their statute or a court order. Even with no
formal time limits, the process is often intense and laborious.
As we observed working with rulewriters and analysts in two
units within the Department of Transportation,? analysts
read the comments and manually mark, code, summarize or
partially re-type portions. These “annotations” identify the
relevant issues raised by commentors, and organize the var-
ious references to each in a fashion that facilitates analysis
by the entire group working on the rule (or other proposal).
This process ultimately leads to preparation of the accom-
panying final statement. As the number, or number-plus-
complexity, of comments increases, the process of finding,
extracting, and organizing material raising relevant issues
becomes proportionately more challenging. Indeed, agen-
cies that have the resources to do so frequently hire outside
contractors to read and summarize large comment sets.

The current paper. This paper reports results in a project
to determine the degree to which automatic issue categoriza-
tion can facilitate reviewing public comments: given a com-
ment set, the automated system should determine for each
sentence in each comment, which of a group of pre-defined
issues it raises, if any. We build on the work of Kwon &
Hovy [5] and Kwon et al.[6], which applies machine learning-
based text categorization techniques (see Sebastiani [8] for
an overview) to automate the comment sorting process. In
particular, Kwon et al. [5, 6] first develop a set of eight gen-
eral topic codes — ECONOMIC, ENVIRONMENT, GOVERNMENT
RESPONSIBILITY, HEALTH, LEGAL, POLICY, POLLUTION, and
TECHNOLOGY and train a machine learning algorithm (they
use a support vector machines (SVMs) [11]) to classify indi-
vidual sentences according to the topics they address. Using
a set of 160 comments divided appropriately into training,
development, and test sets, they report F-measure scores
of 0.30 to 0.83 depending on the topic, with an average F-
measure score of 0.67. SVMs significantly outperforms three
baselines that assign to each sentence (a) all topics, (b) the
most common topic, and (c¢) any topic with a morphological
variant of its name in the sentence. In addition, the system
performance approaches that of human annotator agreement
(0.72 F-measure).

Rather than use a small, closed set of general topic codes,

2The Federal Transit Authority and the Office of Civil
Rights.
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however, we investigate the possibility of categorizing sen-
tences according to the usually much larger, and possibly
hierarchical, set of rule-specific issues employed by rulewrit-
ers as they sort and analyze the comments. In this manner,
we aim to replicate more closely what agency personnel now
do manually. The longer range goal is to employ automatic
issue categorization to speed up the (required) manual re-
view of public comments by grouping similar comment snip-
pets so that rulewriters can read and respond to them as a
whole. Another application would facilitate reply comment
periods by allowing agencies to rapidly provide the public
with first-round comments sorted by issue, to aid and chan-
nel responsive submissions.

In the sections below, we begin by presenting the first in a se-
ries of sentence-level text categorization corpora to be devel-
oped in this project by the Cornell e-Rulemaking Initiative
(CeRI)®. We describe the creation and annotation of the cor-
pus, focusing on characteristics of the notice-and-comment
domain that engender a nontraditional text categorization
corpus and a correspondingly difficult machine learning task.
Interannotator results are presented for a group of six anno-
tators.

We next investigate the application of both standard and hi-
erarchical text categorization techniques to the e-rulemaking
data sets. We find that automatic text categorization meth-
ods show promise as a means of reducing the manual la-
bor required to analyze public comment sets: the sentence-
level issue annotation techniques approach the performance
of human annotators for both flat and hierarchical issue
categorization and outperform a baseline that selects the
most common category for each sentence. The categoriza-
tion scheme includes 17 issues, some of which can be further
divided to create a set of 39 fine-grained issues. Using an
overlap measure of agreement, human annotators achieve in-
terannotator agreement scores of 64.7% and 46.4% for the
17 and 39 issues, respectively. Measured across three issue
categorization data sets, the best-performing automatic cat-
egorization technique is competitive with the interannotator
agreement results, reaching levels of 59-66% and 42-56% ac-
curacy for the 17 and 39 issues, respectively.

2. RELATED WORK

In recent years, researchers have begun to investigate a range
of methods from natural language processing, information
retrieval, and machine learning for a number of e-rulemaking
sub-tasks. Yang & Callan [12, 13], for example, extend du-
plicate detection methods from information retrieval to han-
dle “e-postcard campaigns” — e-mail campaigns organized
by special interest groups that supply constituents with elec-
tronic form letters for submission during the comment pe-
riod. When comments were submitted on paper, modifying
the form letters was difficult — the letter would need to be
re-typed to add or remove text. As a result, most form let-
ters were exact duplicates of one another. These are fairly
easy to identify and need be analyzed for content only once.
In electronic form, however, form letters are very easy to
change, and it is exactly these changed snippets that agency
rulewriters want to locate to determine if the modification
introduces substantive information not present in the orig-

3URL: ceri.law.cornell.edu.
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inal. The Yang & Callan [12, 13] work develops automatic
methods to identify these near-duplicate submissions and to
delineate the modified portions from the original letter.

Kwon et al. [5, 6] investigate the use of natural language
processing methods to identify the main claims of a com-
ment and then categorize them according to whether they
support the proposed rule, oppose the proposed rule, or are
proposing a new idea.

Most relevant for the current paper is the work of Kwon et
al. [5, 6] on topic categorization of public comments. As dis-
cussed above, our work differs from theirs in that we catego-
rize sentences in public comments according to a large set of
rule-specific issues rather than a small set of general topics.
We also investigate hierarchical categorization techniques in
addition to standard flat text categorization methods.

Although we do not aim to make any advances in the area of
text categorization in this paper, we clearly rely on previous
work in this area and describe it in Section 5.

3. CORPUS CREATION

In this work, we treat issue categorization as a problem in
text categorization and apply inductive learning techniques
from the field of machine learning. This is the standard
framework employed in the area of automated text catego-
rization [8]. In particular, we employ supervised learning
algorithms that require an initial “training phase” in which
the learning algorithm is provided with many examples of
the task to be learned. In our case then, we require a cor-
pus of public comments that has been manually annotated
at the sentence-level according to the rule-specific issue(s)
that it addresses, if any. The details of the corpus creation
process are described next.

Working with analysts from the Federal Transit Authority
(FTA) in the Department of Transportation, we identified
two interlinked sets of comments, both involving a group of
guidance “circulars” the agency proposed to issue. Such cir-
culars are a type of document on which the FTA frequently
seeks public comments. Here, the proposed advice involved
grants under three federal statutes that fund local trans-
portation services for the elderly, disabled persons, and low
income persons commuting to work.* FTA had been seeking
public input at several stages of developing this guidance.

We used comments from the final two comment periods:
March 15-May 22, 2006° and September 6-November 6,
2006°. Based on the judgment of the agency official pri-
marily responsible that comments from both periods raised
the same issues, we treat them as a single set. A total of
290 comments were submitted (211 + 79). Many of the
comments were not submitted electronically. When scanned
by the agency, several became image-based PDFs that could
not be converted to machine-readable form. Also, some com-
mentors filed comments with identical text; we retained only

“Docket No. FTA-2006-24037: Elderly Individuals and Indi-
viduals With Disabilities, Job Access and Reverse Commute,
and New Freedom Programs: Coordinated Public Planning
Guidance for FY 2007 and Proposed Circulars.
SFTA-2006-24037-002.

SFTA-2007-24037-0222.

246

a single version of such duplicate comments. As a result of
these adjustments, we were left with 267 comments. These
comprise the CeRI FTA Grant Circulars Corpus.

Next, we constructed a list of 38 issues likely to be raised in
the comments. This list was derived by consulting both the
actual issue summaries prepared by the FTA analyst when
she reviewed the comments, and the Federal Register notice
seeking comments, which explained the proposal in detail
and highlighted various aspects. The issues are organized
into a shallow categorization hierarchy in which the 38 issues
are leaf nodes. Seventeen form the first level; five of these
expand into two or more sub-issues at level two. The issue
hierarchy, expressed in the abbreviated form used within the
annotation tool”, is shown in Figure 1. NONE is a special
category (shown as the 39th “issue”). It is automatically
assigned to sentences deemed by the annotator to address
none of the rule-specific issues. The expanded form of the
issue set, with brief explanation, appears in the Appendix.

The annotation team comprised six law students in their fi-
nal year of study. They were deliberately selected because of
their general academic performance and, particularly, their
work with the legal member of the research team (Farina) in
a course on the federal regulatory process. However, none of
the annotation team, nor anyone else involved in the project,
had expertise in the substantive areas or regulatory pro-
grams involved in the guidance. After an initial three-week
training period in which all students annotated the same
comments and then discussed their selections as a group,
they began annotation. Sporadic follow-up discussion oc-
curred throughout the annotation period about the meaning
and/or scope of specific issues, with clarifying information
then being circulated to the entire group. The students an-
notated comments according to the 39 fine-grained issues.

The annotation tool allows for annotation at the word-,
phrase-, sentence-, or paragraph- level. After an initial pe-
riod of individual annotator discretion, it was determined
that annotation would occur at the sentence level. As a
result, all issue annotations are automatically projected to
sentences. In addition, the fine-grained issue annotations
can be converted to their corresponding top-level issue as
needed for any of our analyses. Finally, any sentences the
student annotator left unmarked are automatically assigned
the label NONE. Annotators were free to assign more than
one issue to a single span of text. Multiple annotations,
however, were rare (4% of sentences in the corpus).

In all, there are 11,094 sentences in the corpus. On aver-
age, there are 41.55 sentences per comment. The shortest
comment has one sentence; the largest has 1420 sentences.

3.1 Interannotator Agreement Results

146 of the 267 comments were used for the interannotator
agreement study, with an average of 2.66 annotators per
comment. Because there can be multiple issues per sentence
and the annotators covered different numbers and subsets of
the documents, we currently measure interannotator agree-
ment using a basic agreement (AGR) measure (rather than

"Mitre’s Callisto.
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Figure 1: Rule-specific Issue Hierarchy. There are 17 top-level categories and 39 leaf categories.

Fleiss’ kappa)®: for all pairs of annotators across all com-
ments that were annotated by both annotators, we calculate
the percentage of sentences for which the annotators assign
overlapping issue labels. In most cases, this amounts to
checking for an exact issue match (since 96% of the sen-
tences are assigned a single issue). Table 1 shows the AGR
score across all pairs of annotators for the full set of 39 issues,
the top-level of the issue hierarchy (17 issues), the five hi-
erarchical issues, and the five hierarchical issues plus NONE.
Along with the AGR scores, we show the coverage of each
issue set across all sentences of the corpus.

When calculated across the full set of 39 issues (38 issues
plus NONE), interannotator agreement scores are quite low
(see row 1 of the table), indicating either that more training
is required for the annotators or that there is inherent dif-
ficulty in interpreting the meaning and applicability of each
issue. The latter possibility is addressed in the next section.
Annotation of just the 17 top-level issues (row 2) amelio-
rates the problem to some degree — agreement increases to
64.7% across all sentences in the corpus. Even higher levels
of agreement (69.3%) can be obtained if annotation is lim-
ited to just the five hierarchical issues at the top-level (row
3) although this issue subset covers only 35.7% of the sen-
tences in the corpus. Annotating these five issues as well as
NONE’s, however, allows for agreement scores approaching
70% and sentence coverage of 86.7%.°

8n current work, we have moved to the more reliable Co-
hen’s and Fleiss’ kappa for measuring interannotator agree-
ment [4].

9Coverage is measured on the “aggregate gold standard” de-
scribed in the next section.
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4. DISTINCTIVE FEATURES OF THE PUB-
LIC COMMENT CATEGORIZATION
TASK

Formulation of the comment categorization problem as a
text categorization task raises a number of non-standard
and /or difficult issues for text categorization algorithms. We
enumerate these below.

Sentence-level Categorization. Although most text cate-
gorization tasks make decisions on entire documents, issues
in the e-rulemaking domain are expressed, and annotated, at
the sentence level or below. This is problematic because cat-
egorization of short texts is known to be quite a bit harder
than categorization of longer texts [2, 7, 14].

Multiplelssuesper Sentence. Typically, the lengthier com-
ments submitted to the agency are written by lawyers or
other persons well-experienced in the legal and/or substan-
tive regulatory domain. They tend to contain long, com-
plex sentences. These stylistically dense sentences may also
be packed with meaning, and so may be annotated with
multiple issues. Handling such sentences might call for (1)
phrase-, rather than sentence-, level annotation (by both the
human annotators and the text categorization algorithms);
(2) expansion of the issue set to include new labels that cover
multiple issues; or (3) changes in the text categorization al-
gorithm. Yet any of these would likely cause a corresponding
drop in performance.

Our policy for handling multi-issue sentences is laid out in
Section 6.

Fairly Large, Hierarchical Issue Set. Proposed rules, guid-
ance and other documents that generate a sufficient amount
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Agreement (%) | Coverage (%)
39 issues 46.4 100
17 top-level issues 64.7 100
5 hierarchical issues 69.3 35.7
5 hierarchical issues plus NONE
68.4 86.7

Table 1: Interannotator agreement scores when annotating w.r.t. different subsets of issues. The table also
shows the percentage of sentences in the CeRI FTA Grant Circulars Corpus that each issue set covers.

of public comment to warrant the help of automatic issue
categorization almost invariably raise a large number of is-
sues. The 38-issue list we used for this corpus appears to be
within the range we expect in future corpora. Hence, the e-
rulemaking domain will typically present a large multi-class
text categorization problem, which is generally more difficult
than a binary classification problem. For one thing, because
of the substantial skew in frequency with which issues are
discussed (see below), insufficient numbers of training ex-
amples are likely to occur for some issues. In addition, at
least some portion of the issues is likely to be hierarchically
related. As discussed in the next section, the hierarchical
nature of categories can both help and complicate the pro-
cess of training accurate text classifiers (see, e.g. Dumais &
Chen [1]).

The NONE Category. The NONE category is likely to be
difficult for the machine learning algorithms in part because
the associated comment sections can cover a wide variety
of topics. Commentors often raise a variety of points for
or against the proposal or the entire process about which
they feel strongly but which the agency does not consider
germane. Some of these non-germane topics will appear fre-
quently and predictably; but many will be random and un-
predictable.

As explained below, we will treat the NONE category spe-
cially in our hierarchical text categorization scheme.

Multiple Gold Standards. There are at least three types
of gold standards one could generate from public comment
issue categorization corpora like the FTA Grant Circulars
Corpus. The first is an “aggregate” gold standard comprised
of comments whose annotations have been reconciled by a
pair of annotators. The second type would more closely ap-
proximate what we understand, from our agency partners,
to be real-world agency practice. When more than one ana-
lyst reviews a comment set to find, extract, and organize the
issue references for subsequent analysis and preparation of
the accompanying final statement, these analysts typically
divide the issues among themselves: each reads all the com-
ments, taking responsibility for collecting material as to his
or her allotted issues. As a result, there typically is not more
than one “annotator” per issue in the real-world. The gold
standard under this annotation scheme would then be the
union of the issue-specific annotations of each analyst.

We have adopted yet a third strategy for creating a gold
standard for the purposes of this paper. In particular, we
are interested in investigating the ability of the text cate-
gorization algorithms to learn to duplicate the annotations
produced by an arbitrary agency analyst. As a result, we
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treat the annotations of each annotator as a separate gold
standard, producing six separate corpora.

Skewed Distribution Across Issues. The FTA Grant Cir-
culars data exhibits substantial skew in terms of the dis-
tribution of sentences that address each issue, further com-
plicating the learning task. Table 2 shows the distribution
of issue annotations across sentences in the aggregate gold
standard described just above. No rule-specific issue (NONE)
was selected for fully 51% of the 11696 sentences in the gold
standard. No other first-level or second-level category ap-
proaches this level of coverage. Discounting NONE, distri-
bution of the remaining 16 top-level issues is still problem-
atic, with coverage ranging from 0.2% (32 sentences) for
GEN_ELIGACTIV to 10.2% (1193 sentences) for PLANNING.
Our agency partners indicate that this is standard for most
rulemakings.

Our only attempt in the current work to deal with the
skewed category distribution is to treat NONE as a special
category in the hierarchical categorization algorithm (see
Section 5).

Domain Knowledge Sippage. Proposed rules, guidance
and other documents on which agencies seek public com-
ment often deal with issues that cannot be adequately un-
derstood without fairly sophisticated legal, scientific and/or
technical knowledge. We believe the extraordinary demands
for domain expertise posed by these kinds of text may in-
troduce a real, but difficult to estimate, degree of confusion
among non-expert annotators when an aggregate gold stan-
dard is used. Even after their initial period of training and
group annotation, the upper-level law students annotating
the FTA Grant Circulars Corpus struggled to establish nu-
ances of meaning, as well as the precise scope, of many of the
38 issues. Further exacerbating these direct consequences
of the lack of domain knowledge, many of the commentors
were, like the agency, well-acquainted with the statutes, pro-
grams and policies involved. This shared knowledge enabled
them to shortcut formal references and explanations that
would have helped non-experts make categorization deci-
sions.’® Thus it is likely to be very difficult to obtain train-
ing sets with high levels of agreement across large issue sets
for these kinds of texts using student or other non-expert
annotators. We currently do not try to identify or correct
for domain knowledge slippage.

Dynamically Changing Issue Set.  According to our agency
collaborators, their analysts can determine virtually all of

1%Such “repeat players” are a feature of virtually every rule-

making and typically write the longest, most issue-laden and
— according to agency rulewriters — “useful” comments.
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Issue Cover-
age (%)
funding 8.7
DefinNew 1.1
BeyondADA 1.8
AndOr 1.5
CompParatrans 0.6
OtherNFreeElig 3.2
NFreeMisc 0.5
JARC 4.6
JARCPriors 0.5
JARC_EligActiv 3.9
JARCMisc 0.2
planning 10.2
PlanElements 2.1
LeadAg 0.6
OutreachEff 1.3
StakeholderParticip 0.5
AgPartnerParticip 0.7
TransProvidrParticip 2.0
MultPartic 0.7
PlanLifespan 0.7
PlanCertif 0.3
CoordPlanDevelMisc 1.3
procedural 6.2
CompSelect 6.0
FairNEquit 0.2
evaluation 6.0
NoFedEval 0.3
Perf_1_Effic 1.1
Perf 2_Effect 0.8
Perf 3_Satis 0.8
Cost 0.2
EvalNOverMisc 2.8
AdminExpen 1.2
FundAppor 0.9
FundTransf 0.6
GEN_EligActiv 0.2
EligGrantees 0.3
TechAsstTrain 1.1
MobilMgt 1.5
DesRecip 2.8
Match 0.5
HowPlansRelate 2.8
GOMB 0.9
NONE 51.0

Table 2: Issue Distribution. Table shows the per-
centage of sentences (in the aggregate gold stan-
dard) that are labeled with each rule-specific issue.
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the substantive issues that will arise in the comments even
before the comments begin to arrive. Oftentimes, the pro-
posed rule itself lays out the set of issues that the agency
would like feedback on. Unexpected issues, however, some-
times arise, and existing issues might need to be further
subdivided during the annotation process. We have ignored
these complications in our current study.

Variation in Comment Quality, Scope and Form. Since
comments are posted by entities ranging from law firms and
trade or professional associations — both of which tend to
have expertise in the area of the proposed rule — to rel-
atively non-expert members of the public, the comments
themselves vary in their clarity and their use of legal and
technical terminology.

Knowledge Transfer Across Rulemakings. For text cat-
egorization techniques to be a feasible solution for rule-specific
issue categorization, the amount of manually annotated train-
ing data (i.e. comments annotated by the rulewriters and
analysts themselves) should be kept to a minimum. For this
reason, text categorization methods that allow for inductive
transfer across related rulemakings will need to be employed
and developed [9] so that new rulemakings can benefit from
previous rulemakings. We have also left this issue for future
work.

5. THE TEXT CATEGORIZATION METH-
ODS

In spite of the difficulties raised in the previous section, we
have made progress in applying text categorization tech-
niques to the CeRI FTA Grant Circulars Corpus.

We have investigated both flat and hierarchical text catego-
rization methods. Flat (standard) text categorization tech-
niques make no assumptions about relationships among cat-
egories and require that training texts are labeled according
to a pre-defined, non-hierarchical list of categories. The vast
majority of research in text categorization falls under this
paradigm [8] and a state-of-the-art machine learning tech-
nique to use in this situation is a support vector machine
(SVM) [11]. SVMs find a hyper-plane that separates the
positive and negative training examples with a maximum
margin in the vector space. For our flat text categorization
algorithm, we use the multi-class version of SVM-light [3],
which allows us to train a single categorization model that
distinguishes among the 39 fine-grained rule-specific issues.

In contrast, hierarchical text categorization methods try to
exploit a hierarchical categorization scheme when attempt-
ing to classify texts. Again, our goal is not to develop new
hierarchical categorization algorithms, but instead to apply
one such state-of-the-art technique to determine if our real-
world categorization task will succumb to automatic meth-
ods. As a result, we loosely follow the approach proposed in
Dumais & Chen [1], which trains separate sets of SVMs for
each level of the categorization hierarchy. Unlike Dumais &
Chen, however, we employ multi-class SVM classifiers when-
ever possible rather than train a collection of binary SVM
classifiers. In addition, we do not experiment with combin-
ing the scores of first- and second-level classifiers. Finally,
we found that treating NONE as a special case improves per-
formance, resulting in what is essentially a three-level cate-



The Proceedings of the 9th Annual International Digital Government Research Conference

gorization scheme:

NONE-classifier: At the top of the hierarchy is a binary clas-
sifier that distinguishes sentences that address NONE of
the issues from those that address some issue.

level-1 classifier: At the next level, is a multi-class clas-
sifier that distinguishes among the remaining 16 top-
level issues for each sentence (i.e. excluding NONE).

level-2 classifiers: At the lowest level, we train one binary
or multi-class classifier to distinguish among the leaf
classes for each of the five hierarchical classes of level-1
(FUNDING, JARC, PLANNING, PROCEDURAL, and EVAL-
UATION).

In the hierarchical setting, test sentences are processed by
first applying the binary NONE-classifier. If the sentence is
deemed non-NONE, then the level-1 and possibly a level-2
classifier is applied depending on the issue specificity re-
quired. When categorizing according to the 17 top-level
issues, therefore, only the NONE-classifier and level-1 classi-
fier are applied; when categorizing according to the 39 fine-
grained issues, all three levels of classifier are applied.

6. EXPERIMENT METHODOLOGY

Following the real-world e-rulemaking setting that we are
trying to emulate, we create six gold standards, one for each
law student annotator. In contrast to many real-world com-
ment analysis scenarios, however, each annotator was in-
structed to annotate the comment set w.r.t. all 39 of the
fine-grained issues (rather than concentrate his or her an-
notation on a subset of the issues). This results in data
sets notably smaller in size than would be the case if we
combined the annotations of all of the annotators: although
every annotator is responsible for covering the entire issue
set, each annotator was assigned a relatively small set of
comments for annotation.

Because the training data for each annotator is in short sup-
ply, we apply Porter stemming and stopword elimination on
the term-based feature vectors. Minimally, this will aid in
generalization at the lexical level.

During training and testing, we treat sentences with multiple
issues as separate instances, one for each assigned issue. As
a result, we will get at most one of the alternative instances
correct in the test data. Note that this method of handling
multiple-issue sentences differs from the Kwon et al. [5, 6]
work, in which the learning algorithms are developed with
multiple-issue sentences in mind. Their evaluation measures,
in turn, differ from ours — they employ F-measure where
we are able to use accuracy.

We investigated SVMs, naive Bayes, and conditional random
fields (CRFs) under a variety of parameter settings and us-
ing 5-fold cross-validation. We use word-based feature vec-
tors for the sentence-based training and test instances and
report here only the results for the top-performing model
— SVMs — under its best parameter settings determined
using the training data (standard tfidf term weighting, and
an RBF kernel). The c¢ (complexity) and g (RBF kernel)
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parameters are also determined using the training data. We
report results for half (3) of the annotators; results for the
remaining three annotators are very similar.

7. RESULTS

Results are shown in Table 3. Note that the three annotators
have labeled overlapping, but different, subsets of the FTA
Grant Circulars comment set. The results across annotators
are, therefore, not directly comparable.

Possibly the most notable result of Table 3 is that flat cate-
gorization techniques outperform hierarchical categorization
when categorizing at both the coarse- and fine-grained issue
levels. (Differences are statistically significant at the 0.05
level.) This has also been the case in previous research on
hierarchical vs. flat text categorization: it has been more
difficult than expected to produce hierarchical categoriza-
tion methods that outperform their flat text categorization
counterparts. (See Dumais & Chen [1] for a discussion.)

Nevertheless, the flat and hierarchical text categorization al-
gorithms significantly outperform randomly assigned predic-
tions when classifying sentences according to coarse-grained
issues (achieves 5.9% accuracy) and according to fine-grained
issues (achieves 2.6% accuracy). Both approaches also sig-
nificantly outperform a classifier that always selects the most
frequent issue that appears in the training set. (The perfor-
mance of the most frequent issue baseline varies for each of
the three annotation sets — from 24% accuracy for annota-
tor3 to 35% for annotatorl and annotator2.)

Possibly more important is the fact that performance ap-
proaches our current interannotator agreement results —
46.4% for coarse-grained issue categorization and 64.7% for
fine-grained issue categorization. This provides a promising
indication that improvements in individual and inter-rater
reliability in the training data will produce similar gains for
automated text categorization techniques.

Figure 2 summarizes results for the top-performing fine-
grained issues based on the Annotator 1 Corpus. Catego-
rization results for NONE were obtained from the NONE
classifier; results for the other issues were obtained from
the hierarchical categorization system, which performs bet-
ter than the flat categorization system for almost all cat-
egories except NONE. For each of the issues, we see that
categorization accuracy approaches or exceeds the interan-
notator agreement score for the issue and that the accuracy
can be relatively high even for issues with low coverage in
the corpus. This bodes well for future work where agreement
scores are expected to be higher.

8. CONCLUSIONS

We have presented the first results to date on rule-specific
issue categorization in e-rulemaking. We provide detailed
information on the creation of a public comment data set
that has been manually annotated according to rule-specific
issues at the sentence level. This is the first in a series of
similar corpora to be developed by our e-rulemaking initia-
tive.

We also presented results on automatic issue categorization
using standard and hierarchical text categorization tech-
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Annotator 1 | Annotator 2 | Annotator 3
Corpus Corpus Corpus

flat categorization

39 fine-grained issues 0.45 0.56 0.42
hierarchical

39 fine-grained issues 0.43 0.53 0.38
flat categorization

17 coarse-grained issues 0.59 0.66 0.63
hierarchical

17 coarse-grained issues 0.56 0.60 0.60

Table 3: Flat and hierarchical categorization results. Results are 5-fold cross-validation accuracies.
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Figure 2: Per-Issue Performance for the Best-Performing Fine-Grained Issues for the Annotator 1 Cor-
pus. Categorization results for NONE were obtained from the NONE classifier; results for the other issues
were obtained from the hierarchical categorization system. In addition to categorization accuracy, we show
interannotator agreement scores and data coverage for the issue.
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niques. As in existing research, we find that flat catego-
rization outperforms our attempts at hierarchical text cate-
gorization. Nevertheless, both approaches offer promise for
the e-rulemaking domain in that they approach the levels of
human interannotator agreement for the current data set.
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APPENDIX

The proposed guidance circulars relate to grants under three
federal statutory programs:

e New Freedom — grants for "new” public transport ser-
vices and alternatives "beyond those required by” the
ADA (Americans with Disabilities Act) that help with
transportation for the disabled

e Elderly Individuals & Individuals with Disabilities Job
Access & Reverse Commute (JARC)

e Grants for transportation of welfare recipients and other
low income persons to and from jobs

A subsequent statute, the Safe, Accountable, Flexible, Effi-

cient Transportation Equity Act: a Legacy for Users (SAFETEA-

LU), links these three together through requirements that
funded projects be “derived from a locally developed, coor-
dinated public transit-human services transportation plan”
developed through a specified process of stakeholder partic-
ipation.

The 38 issue tags (plus NONE) used to annotate the FTA
Grant Circulars corpus are described briefly in the table be-
low.
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FUNDING

(under New Freedom program)
DefinNew what qualifies as “new” services under “New Freedom”
BeyondADA when services are “beyond those required by” the ADA
AndOr? are these cumulative or alternative requirements?
CompParatrans eligibility of complementary paratransit services for funding
Other NFreeElig fundable activities not covered in prior categories
NFreeMisc issues not covered by any prior category

JARC

(program issues)
JARCPriors eligibility status of prior JARC-funded projects
JARC-EligActiv other eligible projects
JARCMisc other issues under this program

PLANNING

(development of coordinated plan)
PlanElements elements of plan
Lead Ag lead Agency
OutreachEff required public outreach efforts by grantees
StakeholdrPartic required stakeholder participation in plan development
AgPartnerPartic agency partner participation in plan development
TransProvidrPartic transportation provider participation in plan development
MultiPartic multiple participants in plan
PlanLifespan lifecycle and duration
PlanCertif certifying that funded projects come from a plan
CoordPlanDevelMiS issues not covered by any prior category

PROCEDURAL

(aspects)
CompSelect competitive selection process
Fair&Equit fair and equitable distribution of grant funds among

organizations

EVALUATION

(and oversight strategies)
NoFedEval federal govt should not be setting evaluation measures
PerflEffic performance measure #1: efficiency (more rides provided)
Perf2Effect performance measure #2: effectiveness (more communities

served)

Perf3Satisf perform measure #3: satisfaction
Cost relevance of cost as evaluation measure
EvalNOverMisc evaluation & oversight issues not covered by any prior category

AdminExpen what administrative expenses can be charged to the grants

FundAppor how grant funds can be apportioned

FundTransf permissible transfers of grand funds

Gen Elig Act

eligible activities under the grant (used only if no statute-specific
tag applies)

EligGrantees who is eligible to receive grants

TechAsst&Train federally provided technical assistance & training for states &
transit agencies

MobilMgt mobility management and capital funding

DesRecip selection of designated recipient of grant monies

Match matching funds requirements

How Plans Relate

relationship of coordinated plan to statewide and metropolitan
transportation planning

GOMB ("Get off my back”)

federal government should defer to state and local
decision-making

NONE

tag automatically supplied to any sentence annotators left
unmarked
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