Can Bad Science be Good Evidence - Neuroscience, Lie Detection, and Beyond

Frederick Shauer
ESSAY

CAN BAD SCIENCE BE GOOD EVIDENCE?
NEUROSCIENCE, LIE DETECTION,
AND BEYOND

Frederick Schauer†

INTRODUCTION

How should the legal system confront the advances in the brain sciences that may possibly allow more accurate determinations of veracity—lie detecting—than those that now pervade the litigation process? In this Essay, I question the view, widespread among the scientists most familiar with these advances, that the neuroscience of lie detection is not, or at least not yet, nearly reliable enough to be used in civil or criminal litigation or for related forensic purposes. But in challenging the neuroscientists and their allies, I make no claims about the science of lie detection that go beyond the current state of scientific knowledge or, more importantly, my own ability to speak about the relevant scientific developments. Rather, I argue that because law's goals and norms differ from those of science, there is no more reason to impose the standards of science on law than to impose the standards of law on science. Law must use science, and should always prefer good science to bad. In some contexts, however, good science may still not be good enough for law, while in other contexts—hence the title of this Essay—bad science, as measured by the standards of scientists, may still have valuable legal uses. To be clear, my goal in this Essay is decidedly not to argue that neuroscience-based lie detection should, now or even in the foreseeable future, necessarily be admissible in court or used for other forensic purposes. Rather,

† David and Mary Harrison Distinguished Professor of Law, University of Virginia. This Essay was presented at the Mini-Foro on Proof and Truth in the Law, Institute for Philosophical Research, Universidad Nacional Autonoma de México (UNAM), as an Inaugural Lecture at the University of Virginia School of Law, at the Duck Conference on Social Cognition, to the Departments of Psychology at Michigan State University and the University of Virginia, and at the Baldy Center for Law and Social Policy at the University of Buffalo School of Law. Many of the ideas presented here were generated during meetings of the John D. and Catherine T. MacArthur Foundation's Law and Neuroscience Project, whose tangible and intangible support I gratefully acknowledge. Detailed and constructive comments by Charles Barzun, Teneille Brown, Jonathan Gradowski, Joshua Greene, Owen Jones, Adam Kolber, Greg Mitchell, John Monahan, Peter Tillers, Lloyd Snook, and Bobbie Spellman have made this version far better than its predecessors.
my goal is to argue that the question of whether the law should use neuroscience-based lie detection cannot be answered by scientific standards of reliability and validity alone. Science can—and should—inform the legal system about facts, including facts about degrees of reliability and the extent of experimental validity, but the ultimate normative and institutional question of whether and when, if at all, a given degree of validity or reliability is sufficient for some legal or forensic purpose is a legal and not a scientific question.

In important respects, this analysis of the potential legal uses of neuroscience-based lie detection is more a case study than a discrete topic. Most of what I argue here applies to other forms of lie detection, to other forms of scientific evidence, and indeed to evidence generally. Thus, as I elaborate in Part V of this Essay, my central theme calls into doubt important dimensions of the modern revolution in the standards for the admission of scientific evidence. Commencing with Daubert v. Merrell Dow Pharmaceuticals, Inc.,1 and continuing through General Electric Co. v. Joiner2 and Kumho Tire Co., Ltd. v. Carmichael,3 the Supreme Court has for almost two decades attempted to deal with the very real problem of "junk science" by imposing increasingly stringent scientific standards of reliability and experimental validity on the admissibility of scientific evidence and expert testimony in the federal courts.4 By dealing with science and experts but not with the myths and superstitions that pervade the fact-finding process, however, the Court may have unintentionally lowered the quality of evidence generally. By discouraging poor science while leaving nonscience untouched, the Daubert revolution may have perversely fostered an increased reliance on the even worse nonscientific evidence that dominates the litigation process by not masquerading as science at all. This problem may not have an easy solution, but its identification suggests that Daubert may have created as many problems as it solved. The revolution in scientific and expert testimony that started with Daubert is thus—or at least should be—far from over.

I begin by describing the current controversy over the legal and forensic uses of neuroscience-based lie detection. In some respects, this controversy should come as no surprise. The common law litigation process places huge reliance on the sworn testimony of witnesses, a phenomenon that is itself worthy of note. After all, many other methods of factual investigation employ dramatically different approaches that rely far more heavily on primary, rather than secondary, sources of knowledge. The scientist who seeks to determine whether drinking red wine reduces the likelihood of heart disease does not, for example, summon representatives of the wine industry and the Temperance League to each make their cases and thereafter decide which of the two advocates is more believable. Rather, she engages in the kind of primary research that we call experimentation. Similarly, historians who conduct archival research, psychologists who experiment on subjects, empirical economists who perform multiple regressions with large data sets, oceanographers who explore the sea with scientific instruments or submersible watercraft, and researchers for policymakers who combine various techniques to determine the factual terrain that a policy will affect all engage in one form or another of primary research.

Once we grasp the diverse array of primary techniques for determining facts, we can understand how unusual the legal system is not only in routinely using party-generated witnesses to provide information as to which they, but not the trier of fact, have first-hand knowledge, but also in precluding the trier of fact from obtaining the first-
hand knowledge that in other domains remains the gold standard for empirical reliability. Still, the legal system we have, idiosyncratic as it is within the realm of empirical inquiry in relying so heavily on second-hand knowledge, is one that often makes it important to determine which of two opposing witnesses is telling the truth.

Of course, not all trials involve a conflict between a truth teller and a liar. Honest misperceptions and more or less honest omissions, exaggerations, shadings, fudgings, slantings, bendings, and hedgings are an omnipresent feature of modern litigation. But so too is flat-out lying. Because the legal system relies far more heavily on the reports of witnesses than on primary investigation by the trier of fact, it should come as no surprise that the law is preoccupied with trying to assess whether the witnesses who testify in court (or otherwise provide information for legal or forensic decision making) are telling the truth.

Historically, the law relied on the oath to serve the truth-warranting function. When people genuinely believed that lying under oath would send them to hell, the law could comfortably rely on a witness’s fear of eternal damnation to provide confidence that witnesses were likely to tell the truth.

See, e.g., Elizabeth B. Ford, Lie Detection: Historical, Neuropsychiatric and Legal Dimensions, 29 INT’L J. L. & PSYCHIATRY 159, 165 (2006) ("The detection of liars and lies has been an element of many professions in the legal [and] criminal justice . . . fields.").

See, e.g., Haack, supra note 9, at 3 (describing law’s early reliance on the oath and related religious tests).

See George Fisher, The Jury’s Rise as Lie Detector, 107 YALE L.J. 575, 580, 583 (1997) (noting that the legal system’s reliance on the oath was based on “the perceived divine power of the oath to compel truthful testimony” through “the threat of divine vengeance” for perjured testimony). Thomas Raeburn White and Daniel Blau describe the history of the oath and its religious aspects. See generally Thomas Raeburn White, Oaths in Judicial Proceedings and Their Effect upon the Competency of Witnesses, 51 AM. L. REG. 373 (1903); Daniel Blau, Note, Holy Scriptures and Unholy Strictures: Why the Enforcement of a Religious Orthodoxy in
As religious belief diminished, or at least as law’s confidence in it as a guarantor of truth waned, the legal system increasingly relied on faith in the lie-exposing powers of vigorous cross-examination. As celebrated in the *Perry Mason* television series of the 1950s and 1960s and since reinforced by numerous items of popular culture, the legal system has long believed that cross-examination so reduces the effectiveness of lying so much that a truth-determining system that relies on witness testimony and cross-examination will not be unacceptably vulnerable to intentional deception.

More importantly, and because cross-examination is far less effective in exposing lies and liars than television writers and viewers believe, the legal system has placed its faith in judges and juries. Now, the legal system assigns the task of determining veracity, and credibility in general, to the trier of fact: most visibly, even if not the most frequently, the jury. Among other things, the jury must assess the demeanor of witnesses, their past record of truth telling, the internal coherence of their stories, and the external coherence of their stories with the stories of others, all in order to determine who is telling the truth and who is not.
Enter science. Because the criteria that judges and juries traditionally employ to evaluate the veracity of witnesses have been notoriously unreliable,19 the quest for a scientific way of distinguishing the truth teller from the liar has been with us for generations. Indeed, the \textit{Frye} test,20 which for many years was the prevailing legal standard for determining the admissibility of scientific evidence, arose in 1923 in the context of an unsuccessful attempt to admit into evidence a rudimentary lie-detection machine invented by William Moulton Marston—perhaps better known as the creator of the comic book character Wonder Woman, whose attributes included possession of a magic lasso, forged from the Magic Girdle of Aphrodite, which would make anyone it encircled tell the truth without fail.22 The device at issue in \textit{Frye} was a simple polygraph and not a magic lasso, but \textit{Frye} did not just set the standard for the admission of scientific evidence for more than a half-century; its exclusion of lie-detection technology also paved the way for the continuing exclusion, with few exceptions, of lie-detection evidence in American courts.23

The science of lie detection has improved considerably since 1923, but not by so much as to have led to large-scale changes in judicial attitudes. Indeed, even after \textit{Daubert v. Merrell Dow Pharmaceuticals},

\begin{itemize}
 \item meanor, reputation for truthfulness, prior inconsistent statement, contradiction, and corroboration).
 \item \textit{Frye} v. United States, 293 F. 1013, 1014 (D.C. Cir. 1923) (holding that scientific evidence must use methods generally accepted in the relevant scientific community in order to be admissible).
 \item Polygraph evidence is per se inadmissible in many jurisdictions. \textit{See}, e.g., United States v. Gilliard, 133 F.3d 809, 815 (11th Cir. 1998); United States v. Sanchez, 118 F.3d 192, 197 (4th Cir. 1997); State v. Jones, 753 N.W.2d 677, 690 (Minn. 2008). Other jurisdictions condition the admission of polygraph evidence on the stipulation of the parties. \textit{See}, e.g., CAL. EVID. CODE § 351.1 (1995); Brown v. Darcy, 783 F.2d 1389, 1395 (9th Cir. 1986); Wilkins v. State, 190 P.3d 957, 970 (Kan. 2008). New Mexico is the most prominent exception. \textit{See} N.M. R. EVID. 11-707 (permitting the admission of polygraph evidence to prove the “truthfulness of any person called as a witness”). But other jurisdictions also express some increased sympathy to polygraph use. \textit{See}, e.g., United States v. Cordoba, 104 F.3d 225, 228 (9th Cir. 1997) (holding that a per se exclusion of polygraph evidence does not survive \textit{Daubert}); Rupe v. Wood, 93 F.3d 1434, 1437 (9th Cir. 1996) (allowing defendant to use polygraph evidence at sentencing hearing); United States v. Calbretth, 908 F. Supp. 877, 896 (D.N.M. 1995) (allowing polygraph evidence if examiner is properly qualified); Commonwealth v. Duguay, 720 N.E.2d 458, 463 (Mass. 1999) (requiring the reliability of polygraphic evidence to “be established by proof in a given case that a qualified tester who conducted the test had in similar circumstances demonstrated the high level of accuracy of the conclusions that the tester reached in those tests”).
\end{itemize}
The situation with respect to lie detection has remained much the same. What makes the foregoing important is the rapidly changing state of cognitive neuroscience—the study of human thinking using various methods of (indirectly) measuring brain activity. The tools of modern neuroscience are numerous, but the most prominent of them is fMRI—functional magnetic resonance imaging. Commonly called brain scanning, fMRI examination holds out the possibility of being able to determine which parts of the brain perform which cognitive tasks. Although novices seeing images of an fMRI scan sometimes believe that certain parts of the brain are "lighting up" with electrical activity when engaged in certain tasks, what actually occurs is that the activated portion of the brain recruits more oxygenated blood cells to help it in its task. What appears to be a lit up part of the brain is actually a part that has more oxygenated hemoglobin in it than it had when it was less, or differently, cognitively engaged.

Hardly surprisingly, the development of fMRI technology has led some researchers to conclude that this technology can be effective in distinguishing liars from truth tellers. If—and it is a huge if—differ-

25 Daubert, 509 U.S. at 593–94.

27 Marcus E. Raichle, A Brief History of Human Brain Mapping, 32 Trends in Neuroscience 118, 118 (2008) ("Cognitive neuroscience combines the experimental strategies of cognitive psychology with various techniques to actually examine how brain function supports mental activities.").

28 For accessible explanations of fMRI, see Scott A. Huettel, Allen W. Song, & Gregory McCarthy, Functional Magnetic Resonance Imaging (2004); Raichle, supra note 27, at 118–25.

30 Holloway, supra note 29, at 145–46.

31 The literature is large and growing. Some studies claim to have produced positive conclusions regarding the capabilities of neuroscience-based lie detection. See, e.g., Christos Davatzikos et al., Classifying Spatial Patterns of Brain Activity with Machine Learning Meth-
ent parts of the brain are active when a person is lying than when telling the truth, or when acting deceptively rather than honestly, then brain scans might be able to determine whether a person is lying or telling the truth. Or so it is claimed. And especially by those who see the commercial potential for just this technology. For-profit com-

panies, in particular No Lie MRI and Cephos have already begun marketing their lie-detection services, and these companies and their principals have been at the forefront of those touting the courtroom and forensic potential of the new technology.

Neuroscience-based lie detection follows a long history of lie-detection technology. The earliest polygraphs analyzed blood pressure, but modern techniques include electroencephalography, which measures brain-generated electrical current, facial microexpression analysis, developed by the psychologist Paul Ekman and featured in the television series “Lie to Me,” periorbital thermography, which measures the temperature around the eyes; and near-infrared spectroscopy, which uses infrared light to measure changes in blood flow and is thus the precursor of fMRI technology. These technologies and methods have their adherents, but I focus on fMRI because it is potentially the most reliable of these techniques—although not reliable enough, as we will see, to persuade those most familiar with the technology to endorse it for courtroom or forensic use.

II

NEUROSCIENCE-BASED LIE DETECTION: THE COUNTERCLAIMS

In legal and policy debates, perhaps almost as much as in physics, every action appears to produce an equal and opposite reaction. And so it has been with the reaction of mainstream academic neuroscientists to the claims about the lie-detection potential of fMRI scans. A prominent article by Stanford law professor Henry Greely and neuroscientist Judy Illes surveyed all of the existing studies of neuroscience-based lie detection through 2006 and concluded that the studies individually fell far short of existing scientific standards of rigor and collectively did not come close to establishing the reliability of fMRI-based lie detection. Accordingly, Greely and Illes urged a legally

imposed moratorium on the use of the technology for courtroom or forensic purposes until a federal regulatory agency could establish its reliability according to scientific standards. Similarly, one leading neuroscientist has insisted that the "data offer no compelling evidence that fMRI will work for lie detection in the real world." Another has concluded that "[a]t present we have no good ways of detecting deception despite our very great need for them." And still another has concluded that using laboratory findings on fMRI lie detection in settings "that can potentially impact individuals' legal rights" should, on the current state of knowledge, "remain a research topic, instead of a legal tool." An editorial in *Nature Neuroscience* joined the chorus of skepticism, as did a report from a National Research Council committee, and several published articles by researchers and practitioners from various disciplines insisted that fMRI lie detection was not ready for the "real world."

40 Greely & Illes, *supra* note 39, at 413.

41 Nancy Kanwisher, *The Use of fMRI Lie Detection: What Has Been Shown and What Has Not*, in *Using Imaging to Identify Deceit: Scientific and Ethical Questions* 7, 12 (2009). Kanwisher's use of "compelling" to set her threshold for usability is noteworthy because much of the question of fMRI's legal use depends precisely on how strong the case must be for fMRI-based lie detection before its use is permissible. To assert that the case must be compelling is thus to impose a very high burden, but why the burden should be as high as requiring "compelling" evidence, as opposed to, say, "plausible" evidence, "some" evidence, or "more persuasive than not" evidence, is unclear. Much that follows in this Essay is exactly about this issue, but it is important to recognize that those who insist at the outset that the evidence be compelling have stacked the deck by, in essence, assuming the conclusion.

44 Editorial, *Deceiving the Law*, 11 Nature Neuroscience 1231, 1231 (2008) ("There is little evidence to indicate that the newer [fMRI-based] lie-detection technologies... work well enough to detect deception accurately on an individual level with an error rate that is low enough to be anywhere near acceptable in court.").

45 NATIONAL RESEARCH COUNCIL, EMERGING COGNITIVE NEUROSCIENCE AND RELATED TECHNOLOGIES 37 (2008) (concluding that "there has not yet been sufficient systematic research to determine if functional neuroimaging can meet the challenges to the neurophysiological detection of psychological states relevant to deception").

At the core of the campaign against the use of fMRI in real-world legal settings is the conviction that the existing state of the research is "poor science." And it is poor science, it is said, not only because of doubts about the reliability rates of fMRI lie detection, but also, and more fundamentally, because the research that allegedly supports the proposed techniques and determines their reliability rates has serious problems of experimental validity. The critics claim that the tests that have been conducted are different in material ways from real-world lying and truth telling, thus undermining the inference that fMRI detection could accurately detect real-world liars just because it accurately detects liars in experimental settings. Part of the difference, indeed the major difference, is that in most instances the researchers have instructed the experimental subjects to lie. But whether an instructed lie is even a lie at all presents substantial questions of construct validity—whether the experiment measures what it purports to measure—that cast significant doubt on the research conclusions. Additional doubts stem from the size and nature of the samples, potential confounding variables (e.g., whether subjects are left- or right-handed), and the significant possibility that subjects could take countermeasures to render the test results unreliable. Thus, the existing research stands accused of being flawed even as pure laboratory research and of being far less applicable to nonlaboratory settings than its proponents have typically claimed.

The charges against the existing research go even further. The results have often been neither published in peer-reviewed journals nor replicated, thus failing to satisfy the normal standards for assess-

47 For a discussion and definitions of scientific reliability and validity, albeit not identical to the usages here and in some of the relevant scientific literature, see JOHN MONAHAN & LAURENS WALKER, SOCIAL SCIENCE IN LAW 57-67 (6th ed. 2006).

48 Greely & Illes, supra note 39, at 403-04 (noting the "artificiality of the deceptive tasks" in fMRI studies and claiming that they bear no resemblance to lying in the real world). A similar argument is that "[r]eports of finding brain patterns of activation corresponding to 'deception' almost always use subjects (often university students) who are told to lie about something (usually a relatively unimportant matter). Equating the lies told in such an artificial setting to the kinds of lies people tell in reality is pure fantasy at this point." Deceiving the Law, supra note 44, at 1231.

49 See, e.g., Kanwisher, supra note 41, at 12 (noting that a laboratory subject who lies because he is "instructed to do so" is not lying); Greely & Illes, supra note 39, at 403-04.

50 Greely & Illes, supra note 39, at 402-04.

51 Critics claim that subjects can foil fMRI readings through detectable countermeasures, such as moving their tongues around, and undetectable countermeasures, such as performing simple mental arithmetic. See Kanwisher, supra note 41, at 12. See also Greely & Illes, supra note 39, at 404-05.
ing scientific outcomes. Moreover, quite a few of the experiments—indeed, most of them—have been conducted by researchers whose connection with No Lie MRI or Cephos gives them a commercial interest in the outcome. Finally, the alleged degree of accuracy—as high as 90%, according to some claims—of neural lie detection is considerably higher than what could likely be expected in nonlaboratory settings.

Insofar as the proponents of neural lie detection have maintained their claims about the accuracy of their methods are scientifically sound and the product of scientifically valid experimentation, they appear to have been exposed as relying on flawed science. Without better evidence of external validity, without dealing with the construct validity problem of distinguishing the genuine lie from following an instruction to utter words that are not literally true, without more rigorous scrutiny of claims of reliability, without higher verified rates of accuracy, without replication, and without subjecting the research to peer review by financially disinterested scientists, the claimed ability of fMRI to identify liars appears to be just that—a claim—and far from what good scientists take to be a sound scientific conclusion.

III

ON THE RELATIONSHIP BETWEEN SCIENTIFIC AND LEGAL STANDARDS

That the science to date appears both methodologically flawed and uncompelling in its conclusions is far from the end of the story, the arguments of the skeptics notwithstanding. But the rest of the story is not a story about science. Instead, it is a story about law and about the reasons for doubting that the scientific failings of fMRI-based lie detection are, or should be, dispositive for the legal system.

52 Kanwisher, supra note 41, at 13.
54 Detecting Deception, supra note 31, at 610. See also Davatzikos, supra note 31, at 663 (88%); Telling Truth, supra note 31, at 262 (78%).
55 Henry T. Greely, Neuroscience-Based Lie Detection: The Need for Regulation, in USING IMAGING TO IDENTIFY DECEIT, supra note 41, at 46, 51 (arguing that reported accuracy rates should be “taken with a grain of salt” because the actual accuracy of fMRI lie detection on “diverse subjects in realistic settings, with or without countermeasures” is unknown).
Initially, we need to remind ourselves that law is about far more than putting criminals in jail, although that is the particular type of legal decision that motivates so much of the existing scientific criticism. One of the scientists quoted above said that fMRI results would be especially unreliable if the subject believed that the results could "send him to prison." And another participant at the same symposium worried about a future in which the "police may request a warrant to search your brain." These may be legitimate worries, but their seriousness depends largely on a view of the Fifth Amendment privilege against self-incrimination that would characterize an involuntary lie-detection test of whatever kind as physical and nontestimonial, an outcome that seems unlikely, albeit not impossible. Given that law enforcement authorities may not require a suspect to talk at all, it is difficult to imagine that a defendant's statement could be subject to an involuntary neural evaluation of its accuracy. The circumstances in which an involuntary fMRI would be usable against a defendant would thus not only require a court to reject an explicit Supreme Court statement that the results of lie-detector tests are testimonial and hence encompassed by the Fifth Amendment but would also require the fMRI not to be used in conjunction with, or to test the validity of, any statement made by the defendant.

Yet even if a future that includes brain-scan warrants is a legitimate worry that requires us to guard against police or prosecution use of fMRI lie detection, it does not follow that other potential courtroom and forensic uses of lie-detection technology are equally worrisome. Whereas a defendant's negative results on an fMRI-based lie-detection exam can hardly suffice to prove guilt "beyond a reasonable doubt," for example, it is a different issue when the question is whether a defendant could use an fMRI result to establish his innocence under that same and highly defendant-protective burden of
proof. Suppose, attaching some arbitrary but conservative numbers to the existing research, that an fMRI evaluation of a defendant’s claim of innocence—"I was somewhere else" or "He started the fight"—has an accuracy rate of 60 percent. It is of course clear that we should not imprison people on a 60 percent probability of their guilt, and we do not do so. But the question is not whether to imprison people who are 60 percent likely to be guilty. At least that is not the only question. Equally important is whether, if there is a 60 percent chance that a defendant’s claim of innocence is accurate, we would want to conclude that his guilt has been proved beyond a reasonable doubt? Indeed, this was precisely the issue in the 1998 Supreme Court case of United States v. Scheffer. The defendant in Scheffer sought to introduce a polygraph test supporting the accuracy of his assertion of innocence. The test results had been excluded under Rule 707 of the Military Rules of Evidence, and the defendant challenged the constitutionality of Rule 707’s absolute exclusion of polygraphic evidence under the Due Process and Compulsory Process Clauses of the Fifth and Sixth Amendments, respectively. The Supreme Court, over Justice Stevens’s dissent and in the face of a concern about a blanket rule of exclusion on the part of four other Justices who concurred in part with Justice Thomas’s opinion, held that a defendant had no constitutional right to offer polygraphic exculpatory evidence. That the defendant may not have a constitutional right to admit a polygraph in his defense, however, does not address the nonconstitutional question of whether such evidence ought to be admissible under these or similar circumstances as a matter of policy. Moreover, the Scheffer majority’s stark distinction be-

64 Commentators have described the evidence that a criminal defendant needs to raise a reasonable doubt as “slight.” Michael H. Graham, Burdens of Proof and Presumptions in Criminal Cases, 45 CRIM. L. BULL. 192 (2009).

65 Note that the accuracy rate for identifying truth may differ from the accuracy rate for identifying a lie. Suppose a defendant claims that he was somewhere else when the crime was committed and that an fMRI indicates he is telling the truth. On the existing state of the research, this fMRI result is more reliable—has a smaller likelihood of error—than an fMRI result that indicates that the defendant’s statement was false. See Kanwisher, supra note 41, at 11. In other words, FMRI identifies truths as lies less often than it identifies lies as truths.

67 Id. at 306.

68 Military Rule of Evidence 707 prohibits the admission of any lie-detection technology in military trials. See MIL. R. EVID. 707; see also Scheffer 523 U.S. at 306–07.

69 U.S. CONST. amend. V.

70 U.S. CONST. amend. VI.

71 See 523 U.S. at 320 (Stevens, J., dissenting).

72 Id. at 318–20 (Kennedy, J. (joined by Justices O’Connor, Ginsburg, and Breyer), concurring in part and concurring in judgment).

73 Id. at 317.
tween "reliable" and "unreliable" masks the important difference between how reliable evidence must be in order for the prosecution to use it and how reliable evidence must be in order for the defendant to use it to raise the possibility of a reasonable doubt as to his guilt, whether by buttressing his claim of innocence or, perhaps more likely, by attacking the credibility of a police officer or other prosecution witness.

Any scientific test will of course have some level of reliability. Whether that level of reliability is high enough for admissibility, however, depends on the purposes for which the evidence is being employed. If the outcome of a test is used as the principal evidence of whether a defendant should go to prison, as it often is with DNA identification, we should demand extremely high levels of reliability. But if the evidence is to be used merely as one component of a larger story about whether a defendant should go to prison, then perhaps the level of reliability can be lower—"[a] brick is not a wall," as the famous adage in the law of evidence goes. Although the standard of proof for conviction of a crime is proof beyond a reasonable doubt, it does not follow that every piece of evidence admissible to (cumulatively) establish proof beyond a reasonable doubt must be individually capable of proving beyond a reasonable doubt that the defendant is guilty. To require that each piece of evidence introduced by the prosecution be reliable beyond a reasonable doubt would collapse the standard for determining guilt into the standard for determining the admissibility of an individual piece of evidence. A fortiori, the level of reliability for an individual item of evidence offered as part of a larger array of evidence to show why a defendant should not go to prison...
prison can be lower still, arguably much lower.80 We do not, after all, have a system in which a defendant goes to prison unless he can prove by compelling evidence or beyond a reasonable doubt that he is not guilty.

The same considerations apply to civil cases. The American legal system employs the standard of proof by a preponderance of the evidence in almost all civil cases because the failure to award damages, say, to an injured or otherwise wronged plaintiff is thought to be as serious an error as wrongly requiring a nonculpable defendant to pay damages.81 Accordingly, it is hardly clear that a party in a civil lawsuit

80 For an extended argument in favor of asymmetry between prosecution and defense in the standards for admission of scientific evidence, see Christopher Slobogin, \textit{Proving the Unprovable: The Role of Law, Science, and Speculation in Adjudicating Culpability and Dangerousness} 131-44 (2007); compare Aaron Katz, A "Moving Bar" Approach to Assessing the Admissibility of Expert Causation Testimony, 57 CLEV. ST. L. REV. 579, 601 (2009) (urging that the reliability requirement of \textit{Daubert} and \textit{Joiner} vary depending on the nature of the case in which the issue arises). The strongest response to the argument for asymmetry is that the presumption of innocence and the beyond-a-reasonable-doubt burden of proof already incorporate the justifiable, defendant-skewed epistemic goals of the criminal justice system and that overlaying special evidentiary burdens on the prosecution (or special evidentiary benefits on the defense) would be a form of double counting. See Larry Laudan, \textit{Truth, Error, and the Criminal Law: An Essay in Legal Epistemology} 123-28, 144 (2006). But this argument rests on the assumption, perhaps justified but perhaps not, that the existing standard of proof achieves the socially proper distribution of errors of false acquittal and false conviction. If it does not, then, given the historical provenance of the beyond-a-reasonable-doubt standard, adjusting the results of that standard through other evidentiary, substantive, or procedural devices hardly seems inappropriate. Nor is there reason to believe that the best way to achieve the optimal distribution of error is with one burden of proof rule rather than a combination of multiple evidentiary and procedural rules. See Raphael M. Goldman & Alvin I. Goldman, \textit{Review of Truth, Error and the Criminal Law: An Essay in Legal Epistemology}, by Larry Laudan, 15 LEGAL THEORY 55, 59-60 (2009) (book review); Michael S. Pardo, On Missapplied Stones and Criminal Law's Epistemology, 86 TEXAS L. REV. 347, 371-74 (2007) (reviewing \textit{Laudan, Truth, Error, and the Criminal Law}, supra). Regardless of the outcome of the debate about asymmetry, however, the very existence of the debate and the terms on which it is conducted demonstrate the folly of trying to determine questions of the legal usability of evidence without taking legal goals and legal standards into account.

should be precluded from using lie-detection technology that is insufficiently reliable to send someone to jail to bolster his assertions about the facts of a civil case. Awarding damages is less serious than imprisoning someone, or so our legal system believes, and it is consequently a mistake to assume that a uniform standard of reliability should govern all legal uses of a particular type of evidence.

The foregoing discussion is about reliability, but the same analysis applies to questions of validity as well. The experiments that allegedly establish the reliability of fMRI lie detection have been attacked as lacking external and construct validity, but, like reliability, "scientific validity . . . is a matter of degree." Accordingly, whether some degree of experimental validity is good enough again depends on the use to which the experiment is being put. Consider first the question of external validity—whether laboratory results permit us to draw inferences and make predictions about a different, nonlaboratory subject population. This issue often arises with respect to psychological experiments when and because conclusions drawn from experiments using university undergraduates—a common pool of experimental subjects—are used to predict the behavior of non-undergraduates in nonlaboratory settings. Although the population about which the predictions are made differs from the subject population, the experimental research is useful when other research demonstrates a substantial correlation between the results reached in the laboratory and those observed in nonlaboratory settings. These correlations are not perfect, of course, but they are positive to a substantial degree, and whether that degree is substantial enough will depend on how the research will be used. When laboratory research is claimed to justify a policy with negative consequences for some segment of the public, for example, a higher correlation between laboratory results and nonlaboratory conclusions is necessary than when, say, the public is merely being warned to be aware of a dangerous phenomenon that thus far has been demonstrated only in the laboratory.

Although less obvious, the same considerations apply to construct validity as well. Suppose we wish to examine the relationship between eating a big breakfast and proficiency in performing mathematical tasks. Suppose also that someone were then to conduct an experi-

82 See supra notes 39–55 and accompanying text.
83 Nance, supra note 56, at 200; See also Beecher-Monas, supra note 75, at 1062.
84 See, e.g., KENNETH R. FOSTER & PETER W. HUBER, JUDGING SCIENCE: SCIENTIFIC KNOWLEDGE AND THE FEDERAL COURTS 17 (1997) ("[D]ecisions about validity depend on the needs one has for the data.").
85 See, e.g., Craig A. Anderson, James J. Lindsay, & Brad J. Bushman, Research in the Psychological Laboratory: Truth or Triviality, 8 CURRENT DIRECTIONS PSYCHOL. SCI. 3, 3 (1999).
86 Id. at 7.
87 Id. at 5.
ment showing a relationship between eating a big breakfast and increased ability to avoid misspellings for the rest of that day. If this experiment were used to support a claim about breakfast and mathematical proficiency, it would be open to the charge of construct validity, because what the experiment measured—spelling ability—was not the same as what it was offered to show—mathematical proficiency. But if the causes of spelling mistakes and the causes of mathematical errors were shown to be positively correlated, then an experiment showing an effect on the former would provide—in the absence of evidence of relevant differences—some evidence of an effect on the latter. The evidence would not be conclusive, but deficiencies in construct validity would not render the experiment totally spurious in terms of drawing conclusions about a different but correlated effect.

So too, perhaps, with the flaws in construct validity in many existing experiments on neural lie detection. With important exceptions, the experiments that purportedly establish the reliability of fMRI lie detection are experiments in which the experimenters tell subjects to lie or not lie. Critics argue that subjects are not actually lying when they follow an instruction to lie and thus that an fMRI result demonstrating a certain kind of brain activity for following an instruction to lie tells us nothing about the kinds of brain activity involved in actual lying. But even though this gap between the instructed lie and the real lie poses a significant construct validity problem, it would render the experimental results valueless only if there were no correlation at all between the causes of the brain activity involved in the real lie and those involved in the instructed lie. We do not yet know whether such a correlation exists, but if it does, even slightly, it would again be incorrect to conclude that the existing studies offer no—as opposed to slight—support for the use of fMRI-based lie detection.

Slight support (or weak evidence) ought not to be good enough for scientists, but it is often sufficient for the law. Not only do basic

88 See Greene & Paxton, supra note 31, at 12506–07 (describing an fMRI study that provided an incentive to subjects to engage in dishonesty but instructed subjects to tell the truth).

89 See, e.g., Simpson, supra note 46, at 494 (“All of the published literature involves scenarios in which the volunteer subjects have been instructed to lie.”).

90 See, e.g., Greely & Illes, supra note 39, at 403–04 (arguing that “[i]t is not clear how this difference [i.e., the lie instruction] from the more usual lie detection settings would affect the results” of the experiments); Kanwisher, supra note 41, at 12.

91 See, e.g., Simpson, supra note 46, at 494 (“No literature addresses the question of how this basic fact [i.e., the command to lie] affects brain activation patterns, in comparison with the more realistic situation in which the person being tested makes a completely free decision about whether to lie”).

92 See David H. Kaye, Statistical Significance and the Burden of Persuasion, 46 LAW & CONTEMP. PROBS. 13, 20 (1983) (“Typically, a scientist will not so certify evidence unless the probability of error, by standard statistical measurement, is less than 5%.”) (quoting Ethyl
principles of evidence law (as well as human thinking) routinely allow the accumulation of weak (but not spurious) pieces of evidence—whether in holistic story-creation form, or for the related purpose of prompting an inference to the best explanation, or in more linear, Bayesian fashion—and not only might weak evidence be sufficient to allow a defendant to resist a prosecution’s claim to have established guilt beyond a reasonable doubt, but low standards of proof pervade the legal system. In some states a plaintiff can resist a defendant’s motion for a directed verdict by offering only a “scintilla” of evidence. In many contexts, evidence that is “substantial” but less than a preponderance can generate legal results. And the police may stop and frisk a person upon “reasonable suspicion” and obtain a search warrant by showing “probable cause” to believe that the search will yield usable evidence. For these and many other purposes, weak (and thus potentially flawed) evidence serves important functions in law. Requiring highly valid scientific processes to certify evidence as “compelling,” “conclusive,” or even “highly reliable” in order for that evidence to be usable would dramatically revamp the legal system as we know it.

Corp. v. EPA, 541 F.2d 1, 28 n.58 (D.C. Cir. 1975)). See also Raichle, supra note 42, at 5 (equating scientific "validity" with "high statistical quality").

96 See, e.g., Hancock v. Mid-South Mgmt. Co., 673 S.E.2d 801, 803 (S.C. 2009) (“[I]n cases applying the preponderance of the evidence burden of proof, the non-moving party is only required to submit a mere scintilla of evidence in order to withstand a motion for summary judgment.”)

97 See, e.g., De La Fuente II v. FDIC, 332 F.3d 1208, 1220 (9th Cir. 2003).

98 Terry v. Ohio, 392 U.S. 1, 20–22 (1968).

99 U.S. CONST. amend. IV.
Against much of the foregoing, it is often argued that juries are easily influenced by misleading evidence and are inept at critically evaluating technical evidence. As a result, the critics argue that superficially persuasive pseudoscientific evidence will have a greater effect on deliberations than it should. Because jurors cannot evaluate scientific evidence critically and cannot appropriately weigh weak but nonspurious evidence, one weakly scientific brick will turn out, it is said, to constitute the entire wall for most jurors.

This reliance on juror incompetence to justify excluding neuroscience evidence seems misplaced, however, or, at the very least, premature. As a preliminary matter, it is worth noting that jury trials are a small and diminishing proportion of all trials, and we might thus want to be cautious about taking the jury as more central to legal decision making than it really is. More importantly, however, the empirical evidence on jury overvaluation is decidedly mixed. Indeed, if we (and the neuroscientists) subjected the common claims of jury overvaluation to the same scrutiny that we subject scientific evidence,
we might find that the alleged basis for excluding bad scientific evidence itself rests on less than ideal science. Consider the research purportedly showing that people take brain scan images as having more evidentiary value than such images actually have. One study compared the effect of textual “neurobabble” with the effect of accurate explanations; another compared brain scans to plain text, simple color bar graphs, and a topographical map; and a third compared the effects of neuroimages with psychological testimony read aloud in insanity defense cases. But none compared the brain scan or neural explanation to otherwise identical or even substantially similar non–brain evidence. By failing to exclude the potentially confounding variables of image type, especially photographic representation, the researchers cannot properly conclude that the distortion of evidentiary valuation was an effect of the brain scans rather than the effect of a photographic image, of a representational image (or even drawing) in complex color, or of complex information presented without opposing explanations and opportunity for cross-examination. Consequently, we lack evidence that judges and juries overvalue brain-scan evidence compared to the kind of visual evidence routinely used in trials, and we do have some evidence that jurors may understand more than we think they do. Moreover, in practice if not in theory, the admissibility and use of some types of evidence may vary with whether it is the judge or jury who is serving as

104 See David P. McCabe & Alan D. Castel, Seeing is Believing: The Effect of Brain Images on Judgments of Scientific Reasoning, 107 COGNITION 343, 349–51 (2008) (concluding that “there is, indeed, something special about the brain images with respect to influencing judgments of scientific credibility”); Deena Skolnick Weisberg et al., The Seductive Allure of Neuroscience Explanations, 20 J. COGNITIVE NEUROSCIENCE 470, 475–77 (2008) (finding that “logically irrelevant neuroscience information can be seductive—it can have much more of an impact on participants’ judgments than it ought to”).

105 See Weisberg et al., supra note 104, at 471–72, 475–77. The term “neurobabble” comes from Sinnott-Armstrong et al., supra note 100, at 368.

106 McCabe & Castel, supra note 104, at 345–47, 349–51 (“The use of brain images to represent the level of brain activity associated with cognitive processes influenced ratings of the scientific merit of the reported research, compared to identical articles including no image, a bar graph, or a topographical map.”).

109 See supra note 103.
the trier of fact, just as it does in the case of hearsay. Even to the extent that juror misperception is a legitimate worry, extrapolating this worry to the legal system generally would be mistaken, precisely because juries make none of the decisions regarding reasonable suspicion to stop, probable cause to search, and other decisions as to which the credibility of a police officer is especially at issue and because juries make only a small percentage of trial decisions. Admittedly, designing an evidentiary system in which admissibility varied depending on whether the trier of fact was judge or jury would encounter difficulties, and formally, if not informally, the American legal system has rejected such an approach. But whether skepticism about juror comprehension, even if well-grounded, is the appropriate model for all of law again cannot be determined without regard to the normative goals of the legal system.

A related objection might be that allowing thresholds of reliability to vary depending on their use would be undercut by cognitive (and even precedential) contamination across those uses. Would allowing defendants to use fMRI lie-detection evidence to support a claim of innocence lead to allowing prosecutors or plaintiffs to do the same in proceeding against a possibly nonculpable defendant? Would authorizing judges to hear fMRI lie-detection evidence in evaluating the credibility of a police officer at a suppression hearing lead to permitting juries to hear such evidence in determining ultimate guilt or innocence? We should not dismiss these potential worries as completely fanciful, but again these are empirical and causal claims about the effect of one action on another. It is more than a bit ironic that those most insistent about finding a sound scientific and empirical basis for the admission of various forms of evidence often seem comfortable abandoning science in favor of their own hunches when the question is about the potential downstream dangers of allowing certain forms of evidence to be used for a particular purpose. Those dangers may exist, but no scientific evidence exists to support such a view. For now, the empirical support for the belief that allowing fMRI lie detection by a defendant in a criminal case will lead to allowing fMRI lie detection by the prosecution against an unwilling defendant appears to be no stronger than the empirical support for the view that fMRI lie detection can actually distinguish liars from truth tellers.

110 See Schauer, supra note 102, at 166 n.3.
111 See id. at 172 & n.31.
112 Justice Stevens notes and responds to this objection in United States v. Scheffer, 523 U.S. 303, 338 n.29 (1997) (Stevens, J., dissenting) (arguing against the proposition that allowing the defendant to admit exculpatory polygraph evidence would result in permitting the prosecution "to introduce inculpatory test results").
In law, as in science, a crucial question is, "compared to what?" And this question can usefully be applied to determining witness veracity in courts of law. Traditionally, the legal system has left the assessment of witness credibility and veracity to the scientifically-unaided determination of the trier of fact, but just what mechanisms do judges and juries use to make these determinations? We know that jurors often use characteristics other than the content of what a witness says to evaluate the truth of a witness's claim, including factors such as whether a witness looks up or down, fidgets, speaks slowly or quickly, and speaks with apparent confidence; and we know that such factors are at best highly unreliable and at worst random. Indeed, numerous studies of the ability of untrained people to determine truth telling in others rarely rises above 60 percent, where 50 percent is the probability that a purely random guess is correct. Moreover, the rules of evidence themselves exacerbate the problem of unreliable determination of veracity by judges and juries by presuming on the basis of scarcely more than venerable superstition that those who have been convicted of serious crimes, even crimes not involving dishonest statements, are more likely to lie than those who have not, by allowing witnesses to offer testimony about whether other witnesses have a reputation in the community for lying or truth telling, and by permitting witnesses to offer their personal opinions about the general credibility of other witnesses.

We can now reframe our question. The question is not, or at least not only, whether fMRI-based lie detection is reliable enough in the abstract to be used in court. Rather, it is whether there are sound reasons to prohibit the use of evidence of witness veracity that is likely better, and is at least no worse, than the evidence of witness veracity that now dominates the litigation process. The choice is not between very good evidence of veracity and inferior fMRI evidence; it is between less good—bad, if you will—fMRI evidence and the even worse evidence that is not only permitted, but also forms the core of the common law trial process. And although it is sometimes a weak argument for a conclusion that something else is worse, if the something

113 See supra notes 18–19.
115 Fed. R. Evid. 609(a)(1).
116 Fed. R. Evid. 608(a).
117 Id.
else is unlikely to change and the improvement is plausible, then the argument is not so weak after all.

VI
ON THE USES AND LIMITATIONS OF SCIENCE:
DOUBTING DAUBERT

The tone of the foregoing notwithstanding, it is decidedly not my goal here to argue for the admissibility of fMRI-based lie-detection evidence in the courtroom or for related forensic purposes. Rather, it is to suggest that the reliability and validity standards for scientific evidence that courts use must be standards that come, ultimately, from the legal goals of legal institutions and not from the scientific goals of scientific institutions.118 Science can tell us that a certain scientific process has, say, a 12 percent error rate (or specific rates of Type I and Type II errors or false positives and false negatives). And scientists must decide for their own scientific purposes whether such rates are sufficient, for example, to assert that something is the case, conclude that a finding is adequate for publication, or find a research program promising enough to renew a research grant. But whether such an error rate is sufficient for a trier of fact to hear it, put someone in jail, keep someone out of jail, justify an injunction, or award damages is not itself a scientific question.

The same applies to methods of inquiry. Science properly relies on peer review, replication, and other indicia of sound methodology. But whether these are the right indicia for purposes of nonscientific action, including but not limited to courtroom verdicts, is not a scientific determination,119 and to think otherwise is often to believe erroneously that one can derive a legal or policy ought from a scientific is.

Evidence cognoscenti will detect in this a challenge to Daubert itself, and that may be so. Daubert and its successors120 were aimed primarily at products liability and mass tort verdicts based on allegedly persuasive but unreliable junk science.121 Indeed, it is difficult to read the description of the tire failure expert in\textit{ Kumho Tire Co., Ltd. v. Carmichael}122 without recognizing that junk science really does ex-

118 See sources cited supra note 9. See also Margaret A. Berger, \textit{Upsetting the Balance Between Adverse Interests: The Impact of the Supreme Court’s Trilogy on Expert Testimony in Toxic Tort Litigation}, 64 LAW & CONTEMP. PROBS. 289, 300–02 (2001) (distinguishing legal and scientific standards of causation).

119 See DAVID L. FAIGMAN ET AL., \textit{SCIENCE IN THE LAW: STANDARDS, STATISTICS AND RESEARCH ISSUES} § 1-3.5.1 (2002) (determining value of scientific expert opinion “is a matter of policy, not science”).

120 See supra note 24.

122 526 U.S. 137 (1999).
And the legal system no doubt must guard against a world in which experts in astrology, phrenology, and countless other bogus-ologies, some of which appear superficially more plausible than astrology and phrenology but have little more grounding in fact, have a place in the courtroom. Moreover, and as the recent National Academy of Sciences study documented in detail, many traditionally used methods of forensic identification—bite marks, shoe prints, handwriting analysis, ballistics, tool marks, and even fingerprints—have less scientific backing than their proponents have claimed and less than the legal system has historically accepted.

Identifying the problem is thus straightforward: prior to the Daubert revolution, American courts admitted into evidence experts and tests purporting to demonstrate defective manufacture, causation, or identification, but which in reality were based on empirical conclusions that had no sound scientific basis as measured by the standards of science. Without Daubert, so the argument goes, such pseudoscientific or weak scientific evidence will continue to be admitted into evidence and continue to persuade juries notwithstanding its scientific weakness. As a consequence, innocent defendants will be convicted and nonculpable tort defendants will be held liable to an unacceptable degree.

The aforesaid steps to the Daubert conclusion are based on empirical claims for which there is little empirical evidence. We do not know with confidence, for example, how often the admission of scientifically substandard evidence has produced erroneous verdicts. Substandard evidence could produce erroneous verdicts in cases where the following three conditions are true: where better evidence leading to the same conclusion does not accompany the substandard evi-

idence, where the substandard evidence causes the trier of fact to find for the prosecution or plaintiff where otherwise the verdict would have been different, and where the defendant was not in fact guilty or culpable. These three conditions may all be present in many cases, but how many cases is uncertain. It is also uncertain what proportion of all cases, verdicts, accidents, or crimes they constitute. It is thus far from clear how much of a problem erroneous judgments are, and how effective Daubert has been in solving it. Nor is it clear that the best solution to the problem of junk science is one that is applied at the point of admissibility, because solving or ameliorating the junk science or erroneous verdict problem by vigorous use of summary judgment, directed verdicts, and dismissal could likely achieve the same result without mistakenly importing the all-things-considered reliability of a party's entire case into the determination of the admissibility of particular pieces of evidence.128

But even if Daubert has significantly reduced the number of erroneous verdicts that poor science actually causes, the "compared to what" question still looms. Bad science is worse than good science, but may not be worse than the nonscience that lurks in the heads of judges and jurors. And flawed science is hardly worse than the superstitions and urban legends that influence so much of public policymaking and legal decision making.129 Daubert is based on the sound premise that a manufacturer should not be liable for damages unless there is a genuine basis for believing that some negligent act of the manufacturer actually caused injury to the user of the product, but it is important to contemplate what occurs when bad science, measured by scientific standards, is excluded from litigation. The answer to this question is unclear, but in the absence of weak but probative science, litigants may offer, and courts may admit, even more nonexpert and nonscientific evidence. After all, the American civil litigation system does not prohibit automobile tort victims from recovering unless they can show with scientific reliability that the defendant was driving negligently, nor does it prohibit defendants from offering a wide variety of nonscientific evidence to keep themselves out of prison. Requiring that science guide all legal determinations of guilt or innocence, liability or nonliability, is utopian in both the best and worst senses of

129 See supra notes 115–17.
that word.130 Best in the sense that such a system might achieve more justice than the one we now have; but worst in the sense that eliminating bad or flawed science from the courtroom, the legal system, and the rules of evidence would require a dismantling of the entire edifice of common law adjudication so unlikely as to produce perverse results. Attempting to make litigation more scientific by keeping out bad science while not doing anything about the ubiquitous non-science that pervades the entire system might well result in a system that is less scientific and less reliable because it keeps out somewhat poor science and while letting the really poor science sneak in through the backdoor by not calling itself science at all.

At the heart of the controversy over law's use of poor science is the justified concern of scientists to keep their scientific enterprise free from nonscientific taint. When science that is not ready for prime scientific time is commandeered for commercial gain, science suffers, as with the commercialization of fMRI-based lie detection. Encouraging shoddy science for legal or policy use is bad for science, and in the long run may—and this is an empirical question—hurt us all by polluting science and devaluing its public and policy use. But the tension between the worthy goals of long-term scientific integrity and the short-term value of imperfect scientific output is hardly new and hardly unique to lie detection or the law of evidence. When medical researchers performing placebo-controlled experiments reach a point at which they suspect but do not yet know with scientific confidence that a new drug will cure a fatal disease,131 they face the same moral dilemma that Dr. Martin Arrowsmith faced in Sinclair Lewis's great novel132 and countless real research physicians have faced before and after: whether to sacrifice science to the alleviation of immediate suffering or to sacrifice people and their health to long-term scientific integrity. The stakes with respect to fMRI-based lie detection are typically lower, but the question is the same. If flawed or commercially motivated science is usable in law, science will suffer. But if flawed or commercially motivated science is barred from the law in the name of science, law's own goals may suffer,133 and the tension and tradeoffs

130 This realization may be why \textit{Kumho Tire Co., Ltd. v. Carmichael} made clear that although \textit{Daubert}'s broad concept of reliability is applicable to all expert testimony, using the norms of science to evaluate reliability is only necessary when the proposed evidence or testimony purports to be scientific. See 526 U.S. 137, 151-52 (1999); see also supra note 79 and accompanying text.

132 SINCLAIR LEWIS, ARROWSMITH (1925).

133 The obligation of law simply to reach a decision and the inability of law to postpone a judgment until better evidence is available are especially important in this context.
between the goals of law and of science can never be completely eliminated.\(^{134}\)

That the evaluation of science within the legal system must be based on characteristically legal goals, standards, and norms is another example of the partial distinctiveness of legal thinking, analysis, and decision making.\(^{135}\) Judges base their decisions on stare decisis, but elementary textbooks on informal logic treat arguments from past practice as a fallacy. Lawyers are expected to rely on authority, but thoughtful scientists recognize that reliance on scientific authority is often at odds with scientific method. When Blackstone observed that "it is better that ten guilty persons escape, than that one innocent suffer,"\(^{136}\) he not only drew on ideas now associated with Type I and Type II errors but also made clear that law's own goals required subjugating maximum accuracy to the greater value of personal liberty.\(^{137}\) As these examples show, it is a mistake to assume that the job of law is to enforce or replicate the decision-making modes of other disciplines and other domains. And so it is with the standards that law uses to determine whether evidence, scientific and otherwise, is sufficiently reliable to be usable for this or that legal purpose. Law must listen to what neuroscientists say about neuroscience, but it must also be attentive to the adjectives and adverbs. When neuroscientists say that there is no "compelling" evidence of fMRI's lie-detecting reliability, that

\(^{135}\) When I suggest that the decision about the use or nonuse of neuroscience-based lie detection for trial or forensic purposes must be made according to legal standards, I do not also mean to suggest that the decision should be made solely by lawyers and judges. Committees or other decision-making processes which represent both legal and scientific professionals would be preferable to leaving the decision solely to legal professionals or solely to scientists. My principal concern in this paper is to argue against the view that only scientists applying scientific criteria should decide on the appropriate uses for science or its conclusions.

\(^{136}\) See Frederick Schauer, Thinking Like a Lawyer: A New Introduction to Legal Reasoning 211–12 (2009).

there is “very little basis” for confidence in the results produced so far, or that claims about fMRI results have been made “prematurely,” they are imposing an evaluative standard on the experimental results. This is as it should be, for we cannot make sense of these or any results without having some evaluative standard. But the evaluative standard to be used by the law, even when it is science that is being evaluated, must be based on law’s goals, law’s purposes, and law’s structures, and as is so often the case, what is good outside of law may not be good enough inside it. Less obvious but often more important is the corollary—that what is not good enough elsewhere may sometimes be good enough for law.